Effect of β -Carotene on the Transformation of Tyrosine **by Nitrogen Dioxide and Peroxynitrous Acid**

KIYOMI KIKUGAWA*, KAZUYUKI HIRAMOTO, SUSUMU TOMIYAMA and KAZUYA NAKAUCHI

School of Pharmacy, Tokyo University of Pharmacy and Life Science (Formerly Tokyo College of Pharmacy), 1432-1 Horinouchi, Hachiofi, Tokyo I92-0392, Japan

Accepted by Prof. E. Niki

(Received 2 June 1998; In revised form 7 August 1998)

In the $NO₂$ -exposure of tyrosine in 70% dioxane/ phosphate buffer (pH 7.4), β -carotene enhanced the degradation of tyrosine and/or 3-nitrotyrosine produced, whereas α -tocopherol and ascorbyl palmitate inhibited the transformation of tyrosine into 3-nitrotyrosine. Generation of certain active species in the interaction of β -carotene with NO₂ was suggested. Ascorbyl palmitate effectively and α -tocopherol slightly inhibited the transformation of tyrosine in the NO₂-exposure in the presence of β -carotene. In the reaction of tyrosine with $ONOO^-/ONOOH$, β -carotene enhanced the degradation of 3-nitrotyrosine produced suggesting generation of certain active species, whereas α -tocopherol and ascorbyl palmitate completely suppressed the transformation of tyrosine into 3-nitrotyrosine.

Keywords: fl-Carotene, nitrogen dioxide, peroxynitrite, tyrosine

INTRODUCTION

Reactive nitrogen species (RNS) including nitrogen dioxide $(NO₂)$ and peroxynitrous acid (ONOOH) are produced from nitrogen monooxide (NO) synthesized by endothelial cells, nerve cells and many types of cells^[1] in contact with oxygen^[2] and superoxide,^[3] respectively. $NO₂$ and ONOOH are considered to be an undesirable mediator for tissue injury. $NO₂$ is also a pollutant in urban air and cigarette smoke.^[4] Most serious injury caused by RNS is the modification of proteins especially tyrosine and tryptophan residues. Thus, tyrosine is converted into 3-nitrotyrosine by $NO₂$ ^[5,6] and ONOOH,^[7,8] and tryptophan is degraded by NO₂^[6] and ONOOH.^[8,9] 3-Nitrotyrosine has been considered to be a biomarker of generation of $NO₂$ and ONOOH, and detected in many biological samples.^[10-17]

Attention has been paid to β -carotene as an effective scavenger for reactive oxygen species (ROS) including singlet oxygen.^[18] There have been few reports demonstrating chemical interaction of β -carotene with RNS. Reaction of β carotene with $NO₂$ yields a nitrosating agent in the dark^[19] or β -carotene cation radical and

^{*} Corresponding author. Tel.: (8t)(426)764503. Fax: (81)(426)764508. E-mail: kikugawa@ps.toyaku.ac.jp.

 $HNO₂$.^[20] Our previous paper has shown that β -carotene scavenges $NO₂$ and ONOOH more effectively than other antioxidants.^[21] In the present paper, effect of β -carotene on the transformation of tyrosine into 3-nitrotyrosine in the reaction with $NO₂$ or ONOOH was investigated. It was found that β -carotene effectively enhanced the degradation of tyrosine and/or 3-nitrotyrosine by $NO₂$ and ONOOH, whereas other antioxidants inhibited the transformation of tyrosine into 3-nitrotyrosine.

MATERIALS AND METHODS

Materials

 $NO₂$ in air (about 100 ppm) was obtained from Nippon Sanso Ltd. (Tokyo, Japan). Concentration of $NO₂$ in a gas bomb was determined by the chemiluminescence method, and effective concentration after passing through the tubing (about 50 ppm) was determined by the method of Saltzman as described previously.^[21] Peroxynitrite (ONOO⁻) was prepared according to the method previously described.^[22] Strongly alkaline solution containing 0.5 M ONOO⁻ was used. $ONOO^-$ is in turn transformed into chemically reactive ONOOH by protonation at $pKa 6.8^{[3]}$ in the reaction buffer system. β -Carotene (purity about 95%) and 3-nitrotyrosine were obtained from Sigma Chemical Company (St. Louis, MO, USA). $dl-\alpha$ -Tocopherol (α -Toc) (purity; above 98%) and L-ascorbyl-6-palmitate (ascorbyl palmitate) (purity above 95%) were obtained from Tokyo Chemical Industry Co. (Tokyo, Japan). 3,3'-Dityrosine (dityrosine) was prepared according to the method previously described.¹⁶¹

Analysis

Tyrosine, 3-nitrotyrosine and dityrosine were determined by high performance liquid chromatography (HPLC) using a Shimadzu LC-6A liquid chromatograph (Osaka, Japan) equipped with a

column (4.6 mm i.d \times 250 mm) of Inertsil ODS-2 (GL Science Inc., Tokyo, Japan). The column was eluted with a mobile phase composed of 0.5% acetic acid/methanol (29:1, v/v) at a flow rate of 0.8 ml/min.^{16]} The fractions were monitored by a Shimadzu SPD-6A UV spectrometric detector at 280nm for tyrosine and 3-nitrotyrosine and by a Shimadzu AF-535 fluorescence HPLC monitor at excitation 285nm/emission 410nm for dityrosine. Tyrosine and 3-nitrotyrosine were eluted at retention times of 9 and 32 min, respectively. Dityrosine was eluted at a retention time of 13 min. Concentration of each compound in sample solutions was determined by comparing the corresponding peak height with that obtained from the standard solution of each compound.

Reaction of Tyrosine with NO2

 $NO₂$ in air (50 ppm) was introduced into a 5 ml mixture composed of 3.5 ml of dioxane containing β -carotene, α -Toc or ascorbyl palmitate, or combined antioxidants, 0.5 ml of 50 mM phosphate buffer (pH 7.5) and 1.0 ml of a solution of tyrosine, 3-nitrotyrosine or tryptophan in water, at a flow rate of 10 ml/min for 60 min. The pH of the reaction mixture was unchanged by the $NO₂$ -exposure during the period. The reaction mixture was then subjected to the product analysis.

Reaction of Tyrosine with ONOO-/ONOOH

Reaction of ONOO⁻/ONOOH was conducted by final addition of the alkaline solution of ONOOto the reaction mixture. To 5ml of a solution composed of 3.5 ml of a solution of β -carotene, α -Toc or ascorbyl palmitate in dioxane, 0.5 ml of 50 mM phosphate buffer (pH 7.0) with 0.1 mM diethylenetriaminepentaacetic acid (DTPA) and 1 ml of a solution of tyrosine or 3-nitrotyrosine in water, an aliquot (about $20~\mu$ I) of the alkaline solution of ONOO⁻ was added to make a final concentration of ONOO⁻/ONOOH at 2 mM.

The pH value of the buffer after the addition of ONOO⁻ was checked, and it was maintained between 7.3 and 7.7. DTPA was added to the reaction mixture to avoid the metaI-dependent generation of hydroxyl radical from the preparation of $ONOO^-/ONOOH$.^[22] The reaction mixture was immediately subjected to the product analysis.

RESULTS

When $NO₂$ in air (50 ppm) was introduced into a solution of $10~\mu$ M β -carotene in 70% dioxane/ phosphate buffer (pH 7.5) for 1h, β -carotene was completely destroyed after introduction of 2 equimolar amounts of $NO₂$ (Figure 1, closed

0 0 10 20 30 40 50 60 NO2- Exposure time (min) FIGURE 1 Time-course of decrease of β -carotene by the $NO₂$ -exposure in the presence of tyrosine, α -Toc and ascorbyl palmitate in 70% dioxane/phosphate buffer (pH 7.5). $NO₂$ in air (50ppm) was introduced into a 5ml solution of 10μ M (50 nmol) β -carotene in 70% dioxane/phosphate buffer (pH 7.5) containing none (\bullet), 0.2 mM (1.0 µmol) tyrosine (O), 0.5 mM (2.5 μ mol) α -Toc (1) and 0.5 mM (2.5 μ mol) ascorbyl palmitate (\Box) at a flow rate of 10 ml/min. Decrease of β -carotene was followed by maximum absorbance

of β -carotene at 450 nm. The numbers indicated by arrows are μ mols of NO₂ introduced. The data shown are the

mean values of duplicate experiments.

circle). The results were consistent with those obtained using *n*-hexane as a solvent.^[21] Under the same conditions introduction of air alone did not affect the stability of β -carotene (data not shown). In the presence of 20 equimolar amounts (0.2 mM) of tyrosine (Figure 1, open circle) β carotene was destroyed at the similar rate, indicating that tyrosine was not effective to prevent β -carotene destruction. In the presence of 50 equimolar amounts (0.5 mM) of α -Toc (Figure 1 closed square) destruction of β -carotene was only partially prevented, indicating that α -Toc is a weak scavenger for $NO₂$. In the presence of 50 equimolar amounts (0.5 mM) of ascorbyl palmitate (Figure 1, open square) destruction of β -carotene was completely prevented, indicating that ascorbyl palmitate is an effective scavenger for $NO₂$.

When $NO₂$ in air (1.35 µmol) was introduced into 70% dioxane/phosphate buffer (pH 7.5) containing 0.2 mM tyrosine for I h, about 22%, of tyrosine was lost and 16% of 3-nitrotyrosine was produced. The amount of dityrosine was less than 0.2%. A significant amount of tyrosine was missing (Table I, lane 1). Addition of β -carotene at the concentrations between 10 and $50 \mu M$, the amounts much smaller than that of $NO₂$ introduced, to the solution of tyrosine before the $NO₂$ exposure caused the enhancement of tyrosine destruction and the decrease in 3-nitrotyrosine formation depending on the dose of β -carotene (Figure 2(A)). Thus, 27.5% of tyrosine was lost and 7.5% of 3-nitrotyrosine was produced in the presence of 50 μ M of β -carotene, the amount of missing tyrosine being increased to 20% (Table I, lane 2). The amount of dityrosine produced was negligible.

Because 3-nitrotyrosine is destroyed by the NO₂-exposure,^[6] the effect of β -carotene on the 3-nitrotyrosine destruction by the $NO₂$ -exposure was investigated. When $NO₂$ in air (1.25 μ mol) was exposed to a solution of $50~\mu$ M 3-nitrotyrosine, 24% of 3-nitrotyrosine was lost, and when the same amount of $NO₂$ was exposed to the solution in the presence of $50 \mu M \beta$ -carotene,

TABLE I Effect of β -carotene, α -Toc and ascorbyl palmitate on the loss of tyrosine and 3-nitrotyrosine caused by NO₂exposure

Antioxidant	Amounts %		
	Tyrosine	3-Nitrotyrosine	Missing tyrosine
1. None	78.0 ± 2.0	16.0 ± 2.0	6.0 ± 1.5
2. 50 μ M β -carotene	72.5 ± 3.0	7.5 ± 2.6	20.0 ± 2.5
3. 0.5 mM α -Toc	100		
4. 50 μ M β -carotene + 0.5 mM α -Toc	91.0 ± 4.0		9.0 ± 1.5
5. 50 μ M β -carotene + 1 mM α -Toc	91.0 ± 3.8		9.0 ± 2.1
6.0.5 mM ascorbyl palmitate	100		
7. 50 µM β -carotene + 0.5 mM ascorbyl palmitate	100		
8. 50 µM β -carotene + 1 mM ascorbyl palmitate	100		0

NO₂ in air (50 ppm) (1.35 μ mol) was introduced into a 5 ml solution of 0.2 mM (1 μ mol) tyrosine in the presence of β -carotene, α -Toc ascorbyl palmitate, β -carotene + α -Toc and β -carotene + ascorbyl palmitate, at a flow rate of 10 ml/min for 1 h. The amounts of tyrosine and 3-nitrotyrosine were determined by HPLC. The data shown are mean values \pm SD obtained from triplicate experiments.

FIGURE 2 Effect of β -carotene (A), α -Toc (B) and ascorbyl palmitate (C) on the decrease of tyrosine and formation of 3nitrotyrosine caused by the NO2-exposure. NO2 in air (50 ppm) (1.35 μ mol) was introduced into a 5 ml solution of 0.2 mM (1.0 μ mol) tyrosine in 70% dioxane/phosphate buffer (pH 7.5) containing each of the antioxidants at the indicated final concentration at a flow rate of 10ml/min for 60min. The concentrations of tyrosine (\bullet) and 3-nitrotyrosine (\bigcirc) were determined by HPLC. The data shown are mean values \pm SD obtained from triplicate experiments.

46% of 3-nitrotyrosine was lost. Hence β -carotene enhanced loss of both tyrosine and 3-nitrotyrosine by the $NO₂$ -exposure. It is likely that certain active species that enhanced the destruction of tyrosine and 3-nitrotyrosine may be generated in the interaction of β -carotene and NO₂.

Effect of α -Toc (Figure 2(B)) or ascorbyl palmitate (Figure 2(C)) on the destruction of tyrosine and the formation of 3-nitrotyrosine by the $NO₂$ -exposure was studied. Decrease of tyrosine and formation of 3-nitrotyrosine by the NO2-exposure were inhibited depending on the concentrations of α -Toc and ascorbyl palmitate and completely inhibited by more than 0.5 mM of α -Toc (Figure 2(B)) and ascorbyl palmitate (Figure 2(C)). The amount of missing tyrosine was negligible (Table I, lanes 3 and 6). The concentrations of these ant±oxidants required for complete prevention of tyrosine transformation were more than 2 equivalents to the dose of $NO₂$. Effect of β -carotene on the tyrosine destruction by the $NO₂$ -exposure (Figure 2(A)) was apparently different from those of other antioxidants (Figures 2(B) and (C)).

Effect of α -Toc and ascorbyl palmitate on the loss of tyrosine and 3-nitrotyrosine caused by the combination of β -carotene and NO₂ was examined. The loss of 0.2 mM tyrosine and the formation of 3-nitrotyrosine by $NO₂$ (1.25 μ mol)exposure in the presence of $50 \mu M$ β -carotene (Table I, lane 2) were inhibited partially by 0.5 or $1 \text{ mM } \alpha$ -Toc (Table I, lanes 4 and 5) and completely by 0.5 or I mM ascorbyl palmitate (Table I, lanes 7 and 8). Ascorbyl palmitate effectively scavenged $NO₂$ to prevent the interaction with β -carotene and thus prevented the loss of tyrosine, whereas α -Toc slightly scavenged NO₂ before the interaction with β -carotene.

When $2 \text{ mM ONOO}^{-}/\text{ONOOH}$ was added to a solution of 0.5mM tyrosine in 70% dioxane/ phosphate buffer (pH 7.3-7.7), about 40% of tyrosine was lost and 16% of 3-nitrotyrosine was produced. The amount of dityrosine was less than 0.2%. Twenty four percentages of tyrosine were missing. Addition of β -carotene in the concentrations between 10 and $50 \mu M$ much smaller than that of ONOO⁻/ONOOH, to the solution of tyrosine did not affect tyrosine destruction but caused decrease in 3-nitrotyrosine formation depending on the dose of β -carotene (Figure 3(A)). The amount of 3-nitrotyrosine produced in the presence of $50~\mu$ M β -carotene was 11%, and the amount of missing tyrosine was increased to 35% by β -carotene. Under the same conditions, 3-nitrotyrosine was destroyed by ONOO-/ONOOH, but the loss was not enhanced by addition of β -carotene. Thus, when $2 \text{ mM ONOO}^{-}/\text{ONOOH}$ was added to a solution of 0.2 mM 3-nitrotyrosine in the buffer in the absence and the presence of 50 μ M β -carotene, the losses of 3-nitrotyrosine were 25% and 27%, respectively. β -Carotene appeared to prevent the formation of 3-nitrotyrosine by $ONOO^{-}/$ ONOOH, but it is likely that certain active species that destroyed tyrosine was produced in the interaction of β -carotene and ONOO⁻/ONOOH.

Effect of α -Toc (Figure 3(B)) and ascorbyl palmitate (Figure 3(C)) on the loss of tyrosine and the formation of 3-nitrotyrosine caused by $ONOO^-/ONOOH$ was examined. α -Toc and

FIGURE 3 Effect of β -carotene (A), α -Toc (B) and ascorbyl palmitate (C) on the decrease of tyrosine and formation of 3-nitrotyrosine caused by ONOO⁻/ONOOH. ONOO⁻/ONOOH (10 μ mol, 2mM) was added to a 5ml solution of 0.5 mM $(2.5 \,\mu\mathrm{mol})$ tyrosine in 70% dioxane/phosphate buffer (pH 7.3-7.7) containing each of the antioxidants at the indicated final concentration. The concentrations of tyrosine (\bullet) and $\overline{3}$ -nitrotyrosine (\bigcirc) were immediately determined by HPLC. The data shown are mean values \pm SD obtained from triplicate experiments.

ascorbyl palmitate inhibited the loss of tyrosine and the formation of 3-nitrotyrosine depending on the concentrations of these antioxidants, and completely inhibited at the concentrations between 1 and 2 mM. Hence, the interaction of β -carotene with ONOO⁻/ONOOH was different from those of α -Toc and ascorbyl palmitate with ONOO⁻/ONOOH.

DISCUSSION

Reaction of β -carotene with NO₂ or ONOO⁻/ ONOOH is a complicated chemistry. It has been shown that β -carotene scavenges NO₂ and ONOO⁻/ONOOH more effectively than other antioxidants.^[21] Most of $NO₂$ are tightly bound to the β -carotene molecule.^[21] Reaction of β -carotene with $NO₂$ gives a small amount of nitrosating agent in the dark and NO in the light, $[19]$ and β -carotene cation radical together with $HNO₂$.^[20] It was suggested in the present study that certain active species that destroy tyrosine and/or 3-nitrotyrosine produced by the reaction with $NO₂$ or ONOOH are generated by the interaction of β -carotene with NO₂ or ONOO⁻/ ONOOH. Detection of radical species including β -carotene cation radical in the present reaction mixture was attempted but unsuccessful. It is not known what active species to destroy tyrosine or 3-nitrotyrosine are produced in the interaction of β -carotene with NO₂ or ONOO⁻/ ONOOH. More detailed study may be necessary for the active species that destroy tyrosine and/or 3-nitrotyrosine.

 α -Toc and ascorbyl palmitate may inactivate $NO₂$ and $ONOO⁻/ONOOH$ to prevent tyrosine loss and 3-nitrotyrosine formation. Reaction of α -Toc with NO₂ produces α -tocopherylquinone nitrite ester with nitrosating activity,^[23,24] and reaction of α -Toc with ONOO⁻/ONOOH produces α -tocopherone cation by two electron process which is in turn hydrolyzed into α tocopherylquinone.^[25,26] Reaction of ascorbyl palmitate with $NO₂$ and $ONOO⁻/ONOOH$ may

involve the reduction of these nitrogen species. These reactions may be involved in the prevention of tyrosine loss and 3-nitrotyrosine formation. The doses of these antioxidants to give effective influence on the tyrosine transformation were, however, relatively high.

3-Nitrotyrosine is considered to be a biomarker for generation of $NO₂$ or $ONOO⁻/ONOOH$ in biological samples. $[10-17]$ It was found in the present investigation that β -carotene, α -Toc and ascorbyl palmitate affected the tyrosine transformation by $NO₂$ and $ONOO⁻/ONOOH$. Effect of β -carotene may be important, because β -carotene affected the transformation at relatively low doses. 3-Nitrotyrosine formation in biological samples may be regulated by β -carotene at low concentrations and α -Toc and ascorbyl palmitate at high concentrations or by combination of them. Effect of β -carotene on the degradation of tryptophan induced by $NO₂$ and $ONOOH^[6,8,9]$ was also investigated in the present study, but the effect of β -carotene at the low doses was small.

Acknowledgements

This work was supported in part by grant for private universities provided by Japan Private School Promotion Foundation.

References

- [1] S. Moncada, R.M.J. Palmer and EA. Higgs (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. *Pharmacological Reviews,* 43, 109-142.
- [2] S.F. Schwartz and W.H. White (1983) Kinetics of reactive dissolution of nitrogen oxides into aqueous solution. In *Trace Atmospheric Constituents* (ed. S.F. Schwartz), John Wiley & Sons, New York, pp. 1-116.
- [3] W.H. Koppenol, J.J. Moreno, W.A. Pryor, H. Ischiropoulos and J.S. Beckman (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. *Chemical Rcsearch in 'Ibxicology,* 5, 834-842.
- [4] D.B. Menzel (1976) The role of free radicals in the toxicity of air pollutants (nitrogen oxides and ozone). In *Free Radicals in Biology, II* (ed. W.A. Pryor) Academic Press, New York, pp. 181-202.
- [5] W.A. Prutz, H. Monig, J. Butler and E.J. Land (1985) Reactions of nitrogen dioxide in aqueous model systems: oxidation of tyrosine units in peptides and proteins. *Archives of Biochemistry and Biophysics,* 243, 125-134.

- [6] K. Kikugawa, T. Kato and Y. Okamoto (1994) Damage of amino acids and proteins induced by nitrogen dioxide, a free radical toxin, in air. *Free Radical Biology and Medicine,* 16, 373-382.
- [7] H. Ischiropoulos, L. Zhu, J. Chen, M. Tsai, J.C. Martin, C.D. Smith and J.S. Beckman (1992) Peroxynitritemediated tyrosine nitration catalyzed by superoxide dismutase. *Archives of Biochemistry and Biophysics,* 298, 431-437.
- [8] H. Ischiropoulos and A.B. A1-Mehdi (1995) Peroxynitritemediated oxidative protein modifications. *Federation of European Biochemical Societies Letters,* 364, 279-282.
- [9] Y. Kato, S. Kawakishi, T. Aoki, K. Itakura and T. Osawa (1997) Oxidative modification of tryptophan residues exposed to peroxynitrite. *Biochemical and Biophysical Research Communications,* 234, 82-84.
- [10] M.F. Beal, W.R. Matson, K.J. Swartz, P.H. Gamache and E.D. Bird (1990) Kynurenine pathway measurements in Huntinton's disease striatum: evidence for reduced formation of kynurenic acid. *Journal of Neurochemistnj,* 55, 1327-2413.
- [ll]J.S. Beckman, Y.Z. Ye, P.G. Anderson, J. Chen, M.A. Accavitti, M.M. Tarpey and C.R. White (1994) Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. *Biological Chemistry Hoppe-Seyler,* 375, 81-88.
- [12] T.M. Wizeman, C.R. Gardner, J.D. Laskin, S. Quinones, S.K. Durhan, N.L. Goller, S.T. Ohnishi and D.L. Laskin (1994) Production of nitric oxide and peroxynitrite in the lung during acute endotoxemia. *Journal of Leukocyte Biology,* 56, 759-768.
- [13] I.Y. Haddad, G. Pataki, P. Hu, C. Galliani, J.S. Beckman and S. Matalon (1994) Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. *The Journal of Clinical Investigation,* 94, 2407-2413.
- [14] H. Ischiropoulos, A.B. A1-Mehdi and A.B. Fisher (1995) Reactive species in ischemic rat lung injury: contribution of peroxynitrite. *American Journal of Physiology,* 269, L158-L164.
- [15] C. Szab6, A.L. Salzman and H. Ischiropoulos (1995) Endotoxin triggers the expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in the rat aorta *in vivo. Federation of European Biochemical Societies Letters,* 363, 235-238.
- [16] L.D.K. Buttery, D.R. Springall, A.H. Chester, T.J. Evans, N. Standfield, D.V. Parums, M.H. Yacoub and J.M. Polak (1996) Inducible nitric oxide synthase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite. *Laboratory Investigation,* 75, 77-85.
- [17] E Wang and J.L. Zweier (1996) Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. The Journal of Biological Chemistry, 271, 29223-29230.
- [t8] C_S. Foote (t979) Quenching of singlet oxygen. In *Singlet Oxygen* (eds. H.H. Wasserman and R.W. Murray) Academic Press, New York, pp. 139-171.
- [19] R.V. Cooney, P.J. Hawood, L.J. Custer and A.A. Franke (1995) Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids. *Environmental Health Perspectives,* 102, 460-462.
- [20] S.A. Everett, M.F. Dennis and K.B. Patel (1996) Scavenging of nitrogen dioxide, thiyl, and sulfonyl free radicals by the nutritional antioxidant β -carotene. The Journal of *Biological Chemistry,* 271, 3988-3994.
- [21] K_ Kikugawa, K. Hiramoto, S. Tomiyama and Y. Asano (1997) β -Carotene effectively scavenges toxic nitrogen oxides: nitrogen dioxide and peroxynitrous acid. *Federation of European Biochemical Societies Letters,* 404, 175-178.
- [22] J.S. Beckman, J. Chen, H. Ischiropoulos and J.P. Crow (1994) Oxidative chemistry of peroxynitrite. *Methods in Enzymology.* 233, 229-240.
- [23] H. Selander and J.L.G. Nilsson (1972) Vitamin E and air pollution. Nitrogen dioxide oxidation of α -tocopherol model compound. *Acta Pharmaceutica Suecica,* 9, 125-128.
- [24] R.V. Cooney, A.A. Franke, P.J. Harwood, V. Hatch-Pigott, L.J. Custer and L.J. Mordan (1993) γ -Tocopherol detoxification of nitrogen dioxide: superiority to α -tocopherol. *Proceedings of the National Academy of Sciences of the United States of America,* 90, 1771-1775.
- [25] N. Hogg, V.M. Darley-Usmar, M.T. Wilson and S. Moncada (1993) The oxidation of α -tocopherol in human low-density lipoprotein by the simultaneous generation of superoxide and nitric oxide. *Federation of European Biochemical Societies Letters,* 326, 199-203.
- [26] N. Hogg, J. Joseph and B. Kalyanaraman (1994) The oxidation of α -tocopherol and trolox by peroxynitrite. Archives of Biochemistry and Biophysics, 314, 153-158.